An ISP perspective on IPv6 Deployment

Simon Hackett Internode

My oldest 'Thing to do'

- I have wanted to deploy IPv6 for a long time
- We'll talk about the barriers to that, for an ISP
- But first...

Customer opinion

- What do our customers think about:
 - The need to transition to IPv6 to avoid IP address exhaustion?
 - The importance of the restoration of a true end to end IP Internet without NAT gateways?
 - The importance of IPv6 in their lives?

I have no idea what you're talking about...

...so here's a bunny with a pancake on its head.

Status of IPv6

 "With the protocol mostly nailed down, the doors are open for rapid implementation and deployment by vendors"

Status of IPv6

- "With the protocol mostly nailed down, the doors are open for rapid implementation and deployment by vendors"
 - Simon Hackett
 - Australian Communications Mag
 - -1995

In the lab too long?

- "There is never time to do it right, but always time to do it over"
 - Critical items not resolved for many years have damaged the credibility of IPv6 deployment

Security

"Security considerations are not discussed in this memo"

 Lack of an end to end security architecture has further driven firewalls and NAT

Firewalls essential

- In the real world, the only thing stopping massive customer PC collapse is firewalls and NAT
- The costs of removing them would be massive
- Edge node security in the real world is really bad

The end to end mantra

- In 1995 we wanted to preserve end-toend connectivity
- In 2006, the king is dead long live the king
- In the real world:
 - Customers do not want end to end, they want to be firewalled
 - And ISPs agree with them

End-to-End examples:

- Soldiers with LANs in their backpacks within a battlefield IPv6 network
- Windscreen wipers on all the cabs in Tokyo
- Massive sensor networks
- Every single customer PC in Australia

None of them work

- None of them should be 'public' at all!
- All require security to firewall them, and are likely to use a server to securely/safely mediate access to summary data
- So what was that about end to end again?

Stopgaps still working

- CIDR worked
 - And IPv6 does not change this
- NAT staved off address starvation
 - Remarkably well

NAT: Not the anti-christ

- NAT and firewalls are the real world
 - Society employs them in many realms
 - They have naturally entered this one
 - IETF negativity toward NAT standardisation has raised to cost of NAT and increased interworking faults
 - But it works anyway

Lack of CPE router IPv6

- Almost zero consumer broadband CPE deployment of IPv6
 - Critical barrier in real world consumer networks
 - Blocks end-to-end even if desired
 - Difficult to see these devices ceasing to use NAT/Firewalls due to inherent benefits in doing so

Business Case?

- There is no compelling ISP business case
 - Commercial premium for IPv6 is zero
 - IPv6 not essential for any application
- There is no nett positive income to gain, its just infrastructure change after all
- True end to end distributes the security problem in a currently un-tenable manner
- No current crisis to force the issue


Other delay factors

- Provider Independent Multihoming broken
- Shims and other hacks
- Arguments over standardisation further delay deployments

Laundry list of other things

- Other challenges abound, to further obstruct progress to IPv6:
 - dual-stacking challenges; non-optimised router code; apathy; security challenges; customer support; DNS infrastructure challenges; ISP resource requirements (network operations, technical support)

So what now?

- Keep improving IPv4
 - This will keep happening anyway.
- Do keep advancing IPv6 ready for the crunch when it finally happens
- Secondary stopgap:
 - Two-stage NAT on customer dynamic IP populations would massively lower IPv4 demand
 - "I cant believe its not the Internet"
 - Static IP customers exempted but charged more for requiring end-to-end
 - No current premium on external static IPs

Tradeable IPv4 Addressing?

- Create an economy around IPv4 IP ranges to force the crunch earlier:
 - Sell new, and trade old, IPv4 address ranges
 - As for Carbon tax/Carbon Credit economy
 - Zero-rate IPv6 addresses for a 'long' time
 - Create economic drivers to achieve result needed
 - Donate new direct NIC income stream into Carbon Credits!

Tradeable IPv4 Addressing?

- Create an economy around IPv4 IP ranges to force the crunch earlier:
 - Sell new, and trade old, IPv4 address ranges
 - As for Carbon tax/Carbon Credit economy
 - Zero-rate IPv6 addresses for a 'long' time
 - Create economic drivers to achieve result needed
 - Donate new direct NIC income stream into Carbon Credits!

Otherwise?

- Its still the best thing we have when IPv4 runs out
- (still!) a question of when
- Without economic drivers or customer demand...?
 - People are very bad at caring in the absence of crisis

So will we deploy?

- Yes, we will
- It remains, however, a difficult question of when
- I really, really want to do it
- It has, somehow, to get above the noise floor
- It has, somehow, *not* to represent a major technical cost to deploy, or:
- Tradeable IPv4 addresses may force the issue on an economic basis 'underneath' customers in a network transparent manner

Questions?

http://www.internode.on.net http://www.agile.com.au simon@internode.com.au

