AARNet's experience with IPv6

Glen Turner 2008-11-19 Australian 2008 IPv6 Summit

Where is AARNet?

- Native IPv6 service to our customers
 - Not-for-profit education and research, health, cultural institutions
- IPv6 broker
 - A best effort service to the greater community, especially developers
- Low deployment by customers
 - Didn't used to matter: by definition research has low initial usage
 - Slowly becoming a strategic issue, and we're trying various approaches to see what will fix that

Network address translaton

The core issue

- IPv6 deployment has failed
 - This summit should be a "wrap party"
 - Failure a result of a vicious circle involving ISPs, customers, vendors plus a notorious historical regulatory failure inhibiting a regulatory response
- So now IPv4 NAT by the ISPs is required for ISPs to provide internet service to new customers

"Carrier-class NAT"

 NAT in the ISP as well as the customer premises equipment

How does NAT work?

- Inspect outgoing traffic
 - Collect (src_addr, src_port, dst_addr, dst_port)
- Re-write src_addr to my exterior interface, find an unused source port on my exterior interface and re-write src_port to that
- Record these addresses and ports

How does NAT work?

- Inspect incoming traffic
- Is the incoming (src_addr, src_port, dst_addr, dst_port) in the NAT table?
- Re-write the dst_addr and dst_port to the original values in the table

Wrinkles with NAT

- Some protocols embed IPv4 addresses
 - These need to be rewritten too
 - May be complex and thus dangerous to do in the forwarding plane
 - eg: SNMP uses ASN.1 encoding
- Some protocols embed forthcoming connection information
 - FTP
- These are typically handled by "NAT modules" which do deeper inspection of the traffic to add entries to the expectation table

NAT is deep packet inspection

- Complex
 - Forwarding plane moves from ASIC to CPU
- Jitter and complexity attacks
 - Some packets need a lot more work than others
- Exploits of code with errors
 - Complex code, so errors certain
- Huge amounts of state
 - Abundant opportunity for resource exhaustion
- Timeouts
 - Some traffic simply isn't suitable

Implications of carrier-class NAT

- The pain of deep packet inspection is exploitable
 - Contrary to the typical IETF practice of soft state protocols
- Latency will increase
 - These will be expensive boxes, so there will be only a few in a ISP's network
 - Gamers will love IPv6
- There is no end-to-end visibility

No end-to-end visibility

- We're sort of used to that: sharing photos on Flickr rather than on a home router
- Real IPv4 addresses are already special
 - Skype supernode
 - Who wants to volunteer to run a real IPv4 address in a NAT world?
- Potential for evil ISPs to move the Internet from a low-rent transport to a "walled garden" where the only services available are those selected by the ISP

Customers and the walled garden

- No research
 - Especially research which disrupts ISP business plans
- NAT performs poorly
 - It's deep packet inspection
 - We've already got severe TCP performance problems with normal routers
- NAT is a poor fit to sensor networks
 - Timeouts and 30s keepalives
 - UDP blasting from big sensors

Our customers' customers

- Internet traffic is language-based
- Australia a small English-speaking country on the far edge of Asia – is an exception
- So it is possible for some language groups to move to IPv6 but not others
 - If IPv4 addresses are priced, then that price will be beyond customers in developing countries
- Noting that our customers' customers come from greater Asia

Practicalities of staged deployment

1. Paperwork

- Allocate IPv6 prefix
- Develop addressing plan
 - Lay IPv6 design over IPv4 design
 - There are 16 bits for subnetting, use the top 4 or so for site aggregation, leaving about 12 for subnets per site
 - Allocate a /64 per leaf subnet

2. Link to ISP

- Configure a IPv6 address and routing on existing ISP link
 - copying design from IPv4
- Static routing or BGP, depending upon site and ISP requirements
- Create or inject interior default route

3. Activate IPv6 on backbone

- This brings the first problem: the poor quality of IPv6 support on some firewalls and other middleboxes
- Don't use EUI-64, but be compatible

4. Establish networking servers

- Unless good reason otherwise use autoconfiguration (EUI-64 addressing) with stateless DHCP
- Stateless DHCP provides DNS and NTP server addresses
 - These will be IPv4 addresses, because of Windows Xp
- Use Dynamic DNS for the average host
- If you plan on IPv6-only devices then use an anycast IPv6 server on the well-known addresses

5. Find a sucker early adopter

- Computer science, engineering, ourselves
- System administration team

6. Transition public-facing services

- Web, e-mail, ...
- Issue: Microsoft Exchange 2003
- Decision: EUI-64 or fixed address in the /64

7. Transition the masses

- Issue: people how travel to other sites which have IPv6 configured but no connectivity
- Issue: another round of fighting with middlerubbish such as VPN servers and clients

8. Transition inward-facing services

- Problem: disconnect between network engineering and applications programmers
 - "You want us to upgrade PeopleSoft so you can get IPv6 support?"
 - "You want deployment prior to the annual production line shutdown?"

9. Finish the job

- Delegation using IPv6 to DNS servers
 - Not available to edu.au
- Activate equivalent IPv6 features on switches as used on IPv4
 - To prevent address spoffing and so on
- Be careful not to deploy services which really only make sense for IPv4
 - VRRP
- Monitoring systems

Applications: get them running

- Even a trivial task such as finding a IP address needs more work than expected
 - IPv4: [0-9]+\.[0-9]+\.[0-9]+
 - IPv6: First network addresses which are not regular
 - IPv6: Uses different characters, ":" was a error
- Applications' deployment timelines are a lot longer than network engineering
- Not fair to only get them running after network engineering and systems administration have finished
 - You can use a tunnel broker to get them IPv6 for testing

A few things we've learned

IPv6 applications

- "Finding each other" applications
 - Peer-to-peer networks
 - Videoconferencing
- Simple old-fashioned Internet
 - Why does the web server on my laptop stop working when I use the home network?
 - Why can't I directly ssh to my laptop when on my home network?
- Avoiding latency of NAT gateways
 - Gamers

Security

- Hosts
 - Not all firewall products understand IPv6, even when the host is running IPv6. You can guess the OS.
- Routers
 - It's a second protocol
 - ipv6 routing line vty 0 4 ip access-group VTY-LIST ip access-group VTY-LIST6
- The real problem is support in corporate firewalls
 - And upgrade plans for those firewalls

Monitoring

- How a connection works:
 - Do I have a global address on default route interface?
 - Yes, look up DNS name using AAAA
 - Present, use that IPv6 address
 - Absent, try to look up the A record
 - No, try to look up the A record
 - Got a AAAA, try for IPv6 connection
 Got a A, try for IPv4 connection
- What happens if we have a black hole on IPv6?
 - IPv6 traffic dies, IPv4-based monitoring system says all well

Reality of corporate networks

- Inadequate
 - Configuration control
 - Monitoring
 - Change control
 - Lab scenarios
- Firewalls are the new voodoo
 - Configuration changes induce fear
 - IPv6 changes the sense of firewall rules: match against lower /64
 - ::1 to ::ff Network
 - ::ff00 to ::ffff Servers
 - ::1234:1234:1243:1234 Autoconfed MAC

Training

- University computer science courses never show students an IPv6 address
- TAFE ditto
- Vendor training (MSCE, RHCE) ditto

AARNet's experience with IPv6

www.gdt.id.au/~gdt/presentations

Glen Turner glen.turner@aarnet.edu.au

