

Managing Remote and Legacy Equipment in an IPv6 World

Ken Wilson, Opengear Inc. ken.wilson@opengear.com

Remote Infrastructure Management

- Normal ICT Infrastructure
 - Routers
 - Servers
 - IP Phones
- Ancillaries
 - Power Distribution Units
 - UPSes

- Things you may not have considered
 - Security Systems
 - Fire Alarms
 - HVAC
 - Electricity Generators
 - Fish food dispensers (really...)

Remote Infrastructure Examples

- Monitoring 1000's of household and business solar power installations
- Roadside cabinet installations for video and other sensors via 3G
- Providing remote access for compliance checking in the gaming industry
- Remote access and monitoring of power generation equipment on minesites.

Remote Infrastructure Management

- DCIM (Data Centre Infrastructure Management)
 - Aimed at unifying management of normal IT infrastructure with management of other essential services.
 - Melding separate departments/responsibilities into one team
 - Challenges
 - Procurement cycles
 - Lack of expertise from teams and from vendors
 - Currently aimed at green-fields data centre design
 - We've got customers applying it to existing setups
 - Installations aren't necessary IT focused.

Management Networks

- Segmented from production networks
- Separate Physical/Logical connection for Out-Of-Band (OOB) Access
- Currently, mostly IPv4 only, some moving to dual stack.
- Remote sites are a challenge
 - Circumstances will dictate that IPv6 transport will be the only option in the near future.

IPv6 only transport

- IPv4 will be available. It will just be bad.
 - Now.
 - Cellular Carrier Grade NAT
 - Degrades Performance
 - Hard for VPNs to traverse
 - Solvable with private APNs
 - Expensive
 - The Future.
 - As above, but can also happen on ADSL/Cable/FTTH connections, particularly in developing countries.

IPv6 Support

- Upgrades
 - Normal ICT infrastructure
 - Part of migration plan
 - Other infrastructure?
 - Expensive
 - Vendors uninterested
 - Inter-departmental headaches
 - Many currently shipping embedded devices will never be capable of IPv6.

Solutions

- Two classes of solution
 - IPv4 over IPv6
 - Keeping the remote management network segment as dual-stack
 - Translation of IPv4 to IPv6
 - Remote segments visible to central organisation only via IPv6

IPv4 over IPv6

- Tunnelling
 - Native (RFC2473) v4v6 Tunnels
 - IPv4 in IPv6 GRE tunnel
 - Both tunnel types should be secured with VPN
 - Good level of vendor support
 - Combined with VPN (IPSec), can be fiddly to set up
- Layer 2 VPN
 - OpenVPN with TAP (Bridging) support
 - Less vendor support (Linux/Windows/OSX)
 - Easier to configure in some cases
 - TCP or UDP based, so may traverse NATs easier

IPv4 to IPv6 Translation

- NAT64
 - Stateless (RFC 6145)
 - Requires 1:1 translation between IPv4 and IPv6 addresses.
 - Good for communication between a defined set of IPv4 and IPv6 nodes, eg. A static network.
 - Stateful (RFC 6146)
 - Creates stateful bindings from a pool of IPv4 to an IPv6 address
 - Harder to support IPv4 nodes connecting to IPv6 nodes
 - Issues
 - Works well for basic TCP/UDP/ICMP packets, but for specific protocols (examples: SIP and FTP) that embed IP information require Application Level Gateways

IPv4 to IPv6 Translation

- Reverse Proxies
 - F5 Style
 - Generally need specific protocol support
- Issues
 - If the infrastructure being managed/monitored does not handle IPv6, the associated management software is unlikely to either!

Recommendations

Try and get all your other infrastructure to be IPv6 capable.

- If you can't (and if you're not just managing vanilla equipment, you won't)
 - Tunnelling with dual-stack is the best way to handle connectivity for legacy devices
 - NATs/Protocol translation will handle some use-cases, but often management software for legacy devices has the same issue as the devices themselves.

Questions/Experiences?

