Prepare Your Enterprise for the Future: Embrace IPv6 Now

Yanick Pouffary, HP IPv6 Global Leader, Chief Technologist, Technology Services Networking

Oct 16, 2012

Agenda

- 1. Today's Realities. Drivers and Operational Advantages
- 2. IPv6 Advantages and Transition Strategies
- 3. HP & IPv6
- 4. Time to Act NOW

Market Trends Today's Realities and Challenges

Why IPv6? Why now?

The new Internet

The Internet has become mission critical yet it is running on empty.

- Explosion of users, devices, connected appliances and applications
- Virtualization and cloud computing

"Killer App" Arguments for IPv6

- Pervasive connectivity & Business Continuity
 - Reactive How do I avoid isolation?
- Business enabler/opportunity
 - Proactive How can I leverage IPv6 to grow my business?

IPv6 is already on a network close to you

Business realities demand IPv6

Connecting Everything

Demand for Agility is driving a Technology Evolution

- Enterprise shifts to "just in time IT" are changing the technology
- Prosumer demands are changing the technology

Demand for Innovation

All Technology Mega Trends rely on a healthy fully interconnected Internet

• Convergence, Cloud, Big Data, Rich Media, Mobility all adding pressures

Peer-to-peer, always-on (immediate-on, quality of experience, security), a social market, changing norms

5 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Flip the ratio from operations to innovation

Today's Reality and Challenges

Quality of Experience is evermore critical

Mitigation techniques (like NAT) to handle the address pool depletion are now inherent as a dominant business model

Address sharing issues

- Traceability of network usage and abusage
- Geo-location and Geo-proximity services
- Multiple levels of NAT may make impossible to establish secure connections (in addition to break end-to-end security)
- Address sharing application impacts
- Frequent NAT Keepalives reduce battery life

Today's Reality

IPv6 is already on a network close to you

IPv6 is very often unmonitored

Security Operational Challenges

- Complexity due deployment of IPv4 transition techniques
- IPv6 deployed along IPv4 increases the size of the attack vector

IPv6 Advantages

IPv6 Advantages Overview

Building on IPv4, IPv6 addresses contemporary networking needs

Features	IPv4	IPv6
Address length	32 bits	128 bits
	2 ³² = ~4,000,000,000	2 ¹²⁸ = ~340,000,000,000,000,000,000,000, 000,000,
NAT	Often necessary	Not necessary
Header size	Variable length, 20 bytes + many options	Fixed-length, 40 bytes + extension headers
Configuration	Manual, DHCPv4	Manual, stateless automatic, stateful automatic (DHCPv6)
Types of addresses	Broadcast, multicast, unicast	Multicast, unicast, anycast
Addresses per-interface	Single	Multiple
Neighbor discovery, router discovery, Address resolution, NUD, redirects, etc.	A variety of separate protocols	Neighbor Discovery Protocol (built in)
Security, autoconfig, QoS, mobility	Optional	Integrated, enhanced
	Address pool depleted	Projected lifetime - Indefinite

IPv6 Operational Advantages

Much more than just a larger addressing space

- Robust, Effective, Efficient. Unlimited Address space.
- Extensibility. Enhanced Mobility.
- End to End Services and applications.
- Enable Service Automation.
- Better Support for QoS.
- Policy driven operations.
- Rapid deployment.
- Free manpower from ordinary tasks

Unlock the potential of IPv6 BYOD & Mobile Enterprise Cloud Computing 4G/LTE mobile networks **Internet of Things** IPv6 **Smart Grid** IPv6 IPv4

IPv6 Network Architecture Options

Address Allocation

• Provider Independent versus Provider Aggregatable address allocation scheme

Addressing Mechanisms

• Manual, Stateless autoconfiguration <u>and/or</u> Stateful autoconfiguration

Transition Mechanisms

- Dual Stack to allow coexistence of both IPv6 and IPv4 on the same infrastructure <u>And/or</u> Tunneling <u>and/or</u> Translation
- IPv6 Internet presence only
 - BUT having a longer term plan for full end-to-end IPv6 enablement is the recommended approach

Security

• Similar to IPv4 + new IPv6 specific security concerns and need to include access media security Remember IPv6 is almost certainly already in your internal network, just unmonitored!

Transition Strategies

Example Today State Disconnected from IPv6 Internet

Three main methods

Dual Stack

 Provides complete support for IPv4 and IPv6 protocols

Tunneling

- Encapsulates IPv6 packets in IPv4 headers (and in later IPv4 packets in IPv6 headers)
- Requires dual-stack devices at either end of the connection

Translation

• Translates IPv6 addresses and into IPv4 addresses

Transition Strategies Explained

Dual Stack

Use IPv4 or IPv6

- IPv4 and IPv6 protocol stacks implemented on the same device
- + Most simple. Network is the same + Applications can select which network protocol to be used
- - IPv4-only cannot communicate with IPv6-only

- Need to maintain 2 routing tables, 2 firewall rule sets, 2 network management configurations etc..

- Network applications must distinguish between IPv6 and IPv4 peers

Simple and widely used.

Transition Strategies Explained

Dual Stack

Tunneling

Use IPv4 or IPv6

- IPv4 and IPv6 protocol stacks implemented on the same device
- + Most simple. Network is the same + Applications can select which network protocol to be used
- - IPv4-only cannot communicate with IPv6-only
 - Need to maintain 2 routing tables, 2 firewall rule sets, 2 network management configurations etc..
 - Network applications must distinguish between IPv6 and IPv4 peers

Simple and widely used. **Recommended Strategy**

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 14

6-in-4 or 4-in-6

- One transport protocol is encapsulated as the payload of the other (and vice versa).
- + Connect Islands of IPv6 or IPv4
 - + Compatible across incompatible networks
 - + Recommended for site-to-site
- - Security issues with tunneled protocols - Reduced performance
 - Complicated network management and troubleshooting

Simple and widely used

Transition Strategies Explained

Dual Stack

Use IPv4 or IPv6

- IPv4 and IPv6 protocol stacks implemented on the same device
- + Most simple. Network is the same
 + Applications can select which network protocol to be used
- - IPv4-only cannot communicate with IPv6-only
 - Need to maintain 2 routing tables, 2 firewall rule sets, 2 network management configurations etc..
 - Network applications must distinguish between IPv6 and IPv4 peers

Simple and widely used. Recommended Strategy

15 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Tunneling

6-in-4 or 4-in-6

- One transport protocol is encapsulated as the payload of the other (and vice versa).
- + Connect Islands of IPv6 or IPv4
 - + Compatible across incompatible networks
 - + Recommended for site-to-site
- - Security issues with tunneled protocols - Reduced performance
 - Complicated network management and troubleshooting

Simple and widely used

Translation

Between IPv4 and IPv6 (NAT64/DNS64)

- Translates IPv6 names & addresses into IPv4 names & addresses (and vice versa).
- + Enables IPv6-only host to communicate with IPv4only hosts (and vice versa),
 - + No modification to IPv4 or IPv6 end nodes, only at boundary routers
- Application incompatibilities (e.g. VoIP), need for ALG, and has all NAT drawbacks
 - Increased complexity in network topology
 - Reduced Performance (dep. on HW)
 - Complicated troubleshooting

IPv6 Transformation

IPv6 Transformation - Not just about the Network

IPv6 has implications across the entire IT environment

Establish a Task Force

Strategy to achieve Transformational Benefits

How will you get there?

Facts

- IPv6 is inevitable, what is your inflection point?
- You control how and what role you want to play
- If your business is reliant on the internet, IPv6 is a necessity.
- Late start rapid deployments of IPv6 increases risk and cost
- Ignoring IPv6 introduces security risks

Pain Points

- Content consumption is breaking down on IPv4
- Instant Connectedness is not possible with IPv4

IPv6 transformation journey

Joint Business & IT Task Force ensures a smooth path toward IPv6

Yesterday's thinking won't solve today's opportunities

- Determine how IPv6 affects all business units
- Find ways IPv6 can help achieve your business and IT goals
- Analyze risks
- Remember Transforming IP dependent applications is time consuming task

HP and IPv6

HP has already delivered IPv6 HP IT IPv6

HP has already delivered IPv6

HP IPv6 Consulting Portfolio

- Aligned Business and IT strategy plan for IPv6
- Understand current state
- ✓ IPv6 transition roadmap

22 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

* for those customers with urgent IPv6 web presence enablement needs

Example - IPv6 in the HP Enterprise

Business Drivers

- Inevitability of IPv6
- Business Continuity issue
- External
 - hp.com e-commerce reachability via IPv6
- Internal
 - Unified communication

Architectural Principle

- Stepwise deployment
- Ensure application and network services support IPv6
- Allow no IPv4 disruption
- Standardize on Dual-stack
- Managed environment
 - Use DHCPv6 where you can
 - Run IPv6 on HP products

Status

- Started deployment in 2001
- Today (Mar 2012)
 - 300+ IPv6 subnets available
 - 120 IPv6 R&D labs deployed
 - Labs interconnected with Tunnels
 - Core Dual-stack
 - Each existing subnet are being migrated to native IPv6 WAN

IPv6 Time to Act

25 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

IPv6 Time to Act NOW

IPv6 transition is inevitable Many countries, have mandated IPv6 IPv6 is a compliance requirement

IPv6 is one of the most significant technology changes in the history of the Internet

www.hp.com/qo/networks www.hp.com/network/ipv6 www.hp.com/services/ipv6

Thank you

